CSE 332 Introduction to Visualization

DATA REDUCTION & SIMILARITY METRICS

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

Lecture	Topic	Projects				
1	Intro, schedule, and logistics					
2	Applications of visual analytics, data, and basic tasks					
3	Data preparation and reduction	Project 1 out				
4	Data preparation and reduction					
5	Data reduction and similarity metrics					
6	Basic vis techniques for non-spatial data					
7	Introduction to D3	Project 2 out				
8	Perception and cognition, visual design and aesthetics					
9	Data mining techniques: clusters, text, patterns, classifiers					
10	Data mining techniques: clusters, text, patterns, classifiers					
11	High-dimensional data, dimensionality reduction					
12	Computer graphics and volume rendering	Project 3 out				
13	Techniques to visualize spatial (3D) data					
14	Scientific and medical visualization					
15	Scientific and medical visualization					
16	Non-photorealistic rendering					
17	Midterm					
18	Principles of interaction	Project 4 out				
19	Visual analytics and the visual sense making process					
20	Correlation and causal modeling					
21	Big data: data reduction, summarization					
22	Visualization of graphs and hierarchies					
23	Visualization of text data	Project 5 out				
24	Visualization of time-varying and time-series data					
25	Memorable visualizations, visual embellishments					
26	Evaluation and user studies					
27	Narrative visualization and storytelling					
28	Data journalism					

RECALL: THE RECTANGULAR DATASET

One data item

The variables

→ the attributes or properties we measured

The data items

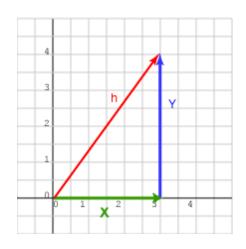
→ the samples
(observations)
we obtained
from the
population of
all instances

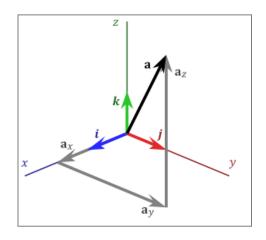
	A	В	C	D	E	F	G	Н	1
1	Name	Country	Miles Per Gallon	Accceleration	Horsepower	weight	cylinders	year	price
2	Volkswagen Rabbit DI	Germany	43,1	21,5	48	1985	4	78	2400
3	Ford Fiesta	Germany	36,1	14,4	66	1800	4	78	1900
4	Mazda GLC Deluxe	Japan	32,8	19,4	52	1985	4	78	2200
5	Datsun B210 GX	Japan	39,4	18,6	70	2070	4	78	2725
6	Honda Civic CVCC	Japan	36,1	16,4	60	1800	4	78	2250
7	Oldsmobile Cutlass	USA	19,9	15,5	110	3365	8	78	3300
8	Dodge Diplomat	USA	19,4	13,2	140	3735	8	78	3125
9	Mercury Monarch	USA	20,2	12,8	139	3570	8	78	2850
10	Pontiac Phoenix	USA	19,2	19,2	105	3535	6	78	2800
11	Chevrolet Malibu	USA	20,5	18,2	95	3155	6	78	3275
12	Ford Fairmont A	USA	20,2	15,8	85	2965	6	78	2375
13	Ford Fairmont M	USA	25,1	15,4	88	2720	4	78	2275
14	Plymouth Volare	USA	20,5	17,2	100	3430	6	78	2700
15	AMC Concord	USA	19,4	17,2	90	3210	6	78	2300
16	Buick Century	USA	20,6	15,8	105	3380	6	78	3300
17	Mercury Zephyr	USA	20,8	16,7	85	3070	6	78	2425
18	Dodge Aspen	USA	18,6	18,7	110	3620	6	78	2700
19	AMC Concord D1	USA	18,1	15,1	120	3410	6	78	2425
20	Chevrolet MonteCarlo	USA	19,2	13,2	145	3425	8	78	3900
21	Buick RegalTurbo	USA	17,7	13,4	165	3445	6	78	4400
22	Ford Futura	Germany	18,1	11,2	139	3205	8	78	2525
23	Dodge Magnum XE	USA	17,5	13,7	140	4080	8	78	3000
24	Chevrolet Chevette	USA	30	16,5	68	2155	4	78	2100

REPRESENTATION

Each data item is an N-dimensional vector (N variables)

recall 2D and 3D vectors in 2D and 3D space, respectively





Now we have N-D attribute space

- now the data axes extend into more than 3 orthogonal directions
- hard to imagine?
- that's why need good visualization methods (will see some soon...)

TODAY'S THEME

Data Reduction

DATA REDUCTION - WHY?

Because...

- need to reduce the data so they can be feasibly stored
- need to reduce the data so a mining algorithm can be feasibly run

What else could we do

- buy more storage
- buy more computers or faster ones
- develop more efficient algorithms (look beyond O-notation)

However, in practice, all of this is happening at the same time

- unfortunately, the growth of data and complexities is always faster
- and so, data reduction will always be important

DATA REDUCTION - How?

Reduce the number of data items (samples):

- random sampling
- stratified sampling

Reduce the number of attributes (dimensions):

- dimension reduction by transformation
- dimension reduction by elimination

Usually do both

Utmost goal

- keep the gist of the data
- only throw away what is redundant or superfluous
- it's a one way street once it's gone, it's gone

WHICH SAMPLES TO DISCARD?

Good candidates are redundant data

how many cans of ravioli will you buy?

SAMPLING PRINCIPLES

Keep a representative number of samples:

- pick one of each
- or maybe a few more depending on importance

How to Pick?

You are faced with collections of many different data

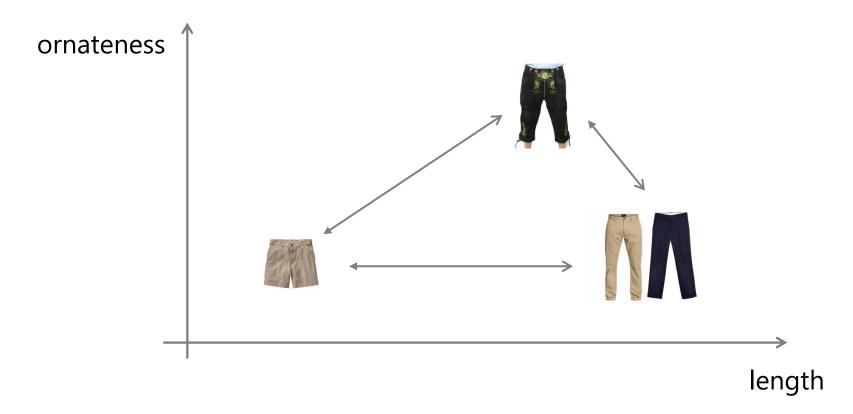
they are usually not nicely organized like this:

MEASURE OF SIMILARITY

Are all of these items pants?

- need a measure of similarity
- it's a distance measure in high-dimensional feature space

FEATURE SPACE



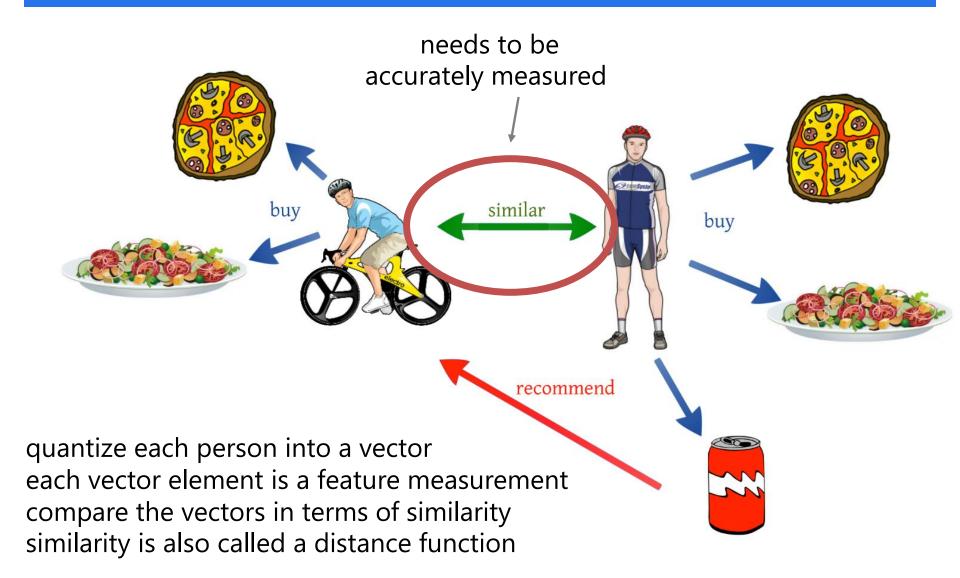
We did not consider color, texture, size, etc...

- this would have brought more differentiation (blue vs. tan pants)
- the more features, the better the differentiation

HOW MANY FEATURES DO WE NEED?

Measuring similarity can be difficult

BACK TO SIMILARITY FUNCTIONS



DATA VECTORS

Pant:

<le>dength, ornateness, color>

Food delivery customer:

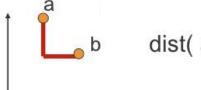
<type-pizza, type-salad, type-drink>

Examples:

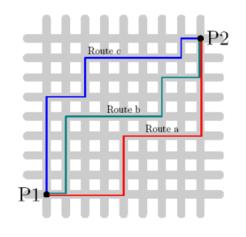
- pants: <long, plain, tan>, <short, ornate, blue>, ...
 expressed in numbers: <30", 1, 2>, <15", 2, 5>
- food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, ...
 expressed in numbers: <1, 1, 0>, <1, 1, 3>

METRIC DISTANCES

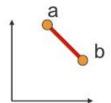
Manhattan distance



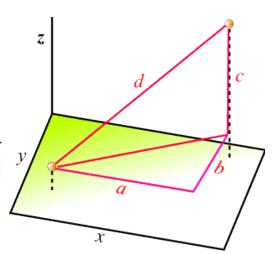
b dist(a,b) =
$$||a - b||_1 = \sum_i |a_i - b_i|$$



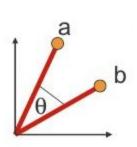
Euclidian distance



dist(a,b) =
$$||a-b||_2 = \sqrt{\sum_i (a_i-b_i)^2}$$



COSINE SIMILARITY



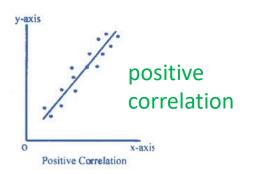
$$s(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sum_{i=0}^{n-1} x_i y_i}{\sqrt{\sum_{i=0}^{n-1} (x_i)^2} \times \sqrt{\sum_{i=0}^{n-1} (y_i)^2}}$$

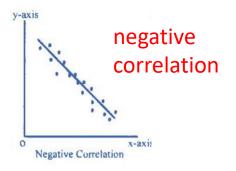
how is this related to correlation?

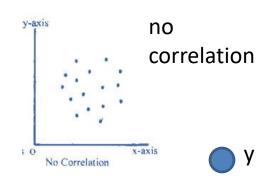
Interlude - Correlation

What is correlation

- correlation is a statistical measure that indicates the extent to which two or more variables fluctuate together
- a positive correlation indicates the extent to which those variables increase or decrease in parallel
- a negative correlation indicates the extent to which one variable increases as the other decreases

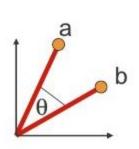






spatial proximity representation

COSINE SIMILARITY



$$s(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sum_{i=0}^{n-1} x_i y_i}{\sqrt{\sum\limits_{i=0}^{n-1} (x_i)^2} \times \sqrt{\sum\limits_{i=0}^{n-1} (y_i)^2}}$$

how is this related to correlation?

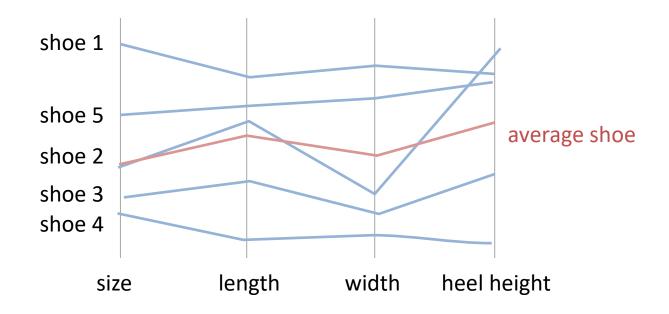
Pearson's Correlation = correlation similarity

$$r = r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

mean across all variable values for data items x, y

e.g. the "average looking" pair of pants or shoes

CORRELATION DEMONSTRATION



Correlations: (5x5-5)/2=10 pairs

- positively correlated: shoes 1 and 4, shoes 2 and 3
- negatively correlated: shoes 1 and 2, 1 and 3, 2 and 4, 3 and 4
- fairly uncorrelated: shoe 5 with all others 1, 2, 3, 4

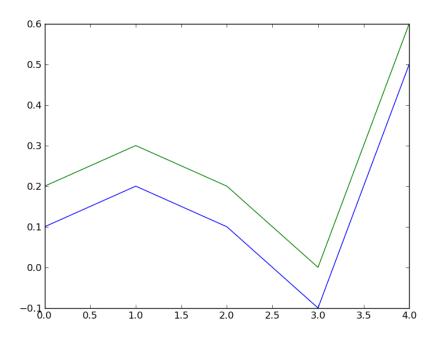
CORRELATION VS. COSINE DISTANCE

Correlation distance is invariant to addition of a constant

- subtracts out by construction
- green and blue curve have correlation of 1
- but cosine similarity is < 1</p>
- correlated vectors just vary in the same way
- cosine similarity is stricter

Both correlation and cosine similarity are invariant to multiplication with a constant

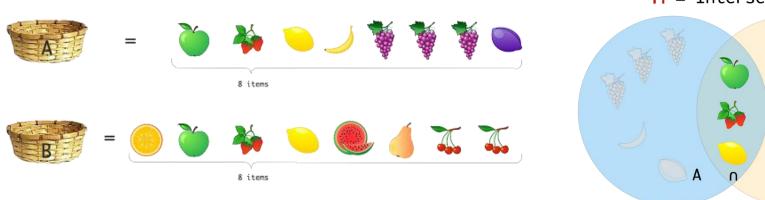
invariant to scaling



green = blue + 0.1

JACCARD DISTANCE

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$



 \cap = Intersection

What's the Jaccard similarity of the two baskets A and B? 3/13 = 0.23

ORGANIZING THE SHELF

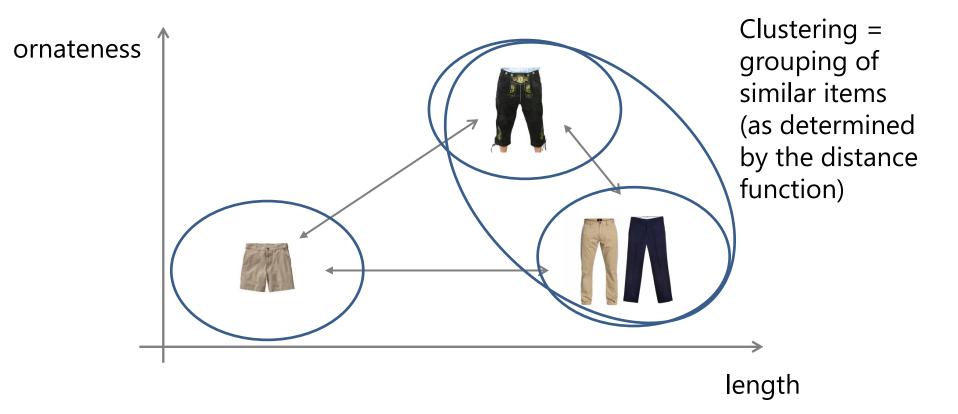
This process is called *clustering*

 and in contrast to a real store, we can make the computer do it for us

WHAT IS CLUSTERING?

Note:

- in data mining similarity and distance are the same thing
- so we will use these terms interchangeably



WHAT IS A GOOD CLUSTER?

A cluster is a group of objects that are similar

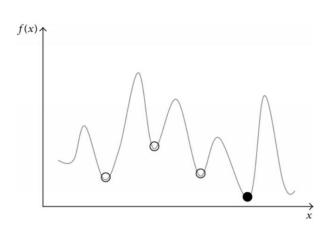
and dissimilar from other groups of objects at the same time

We need an objective function to capture this mathematically

- the computer will evaluate this function within an algorithm
- one such function is the mean-squared error (MSE)
- and the objective is to minimize the MSE

It's not that easy in practice

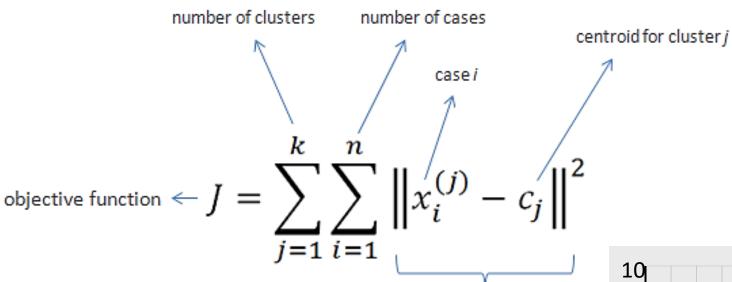
- there is only one global minimum
- but often there are many local minima
- need to find the global minimum



Global extreme

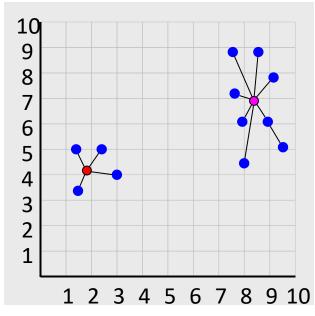
Objective – Minimize Squared Error

Distance function



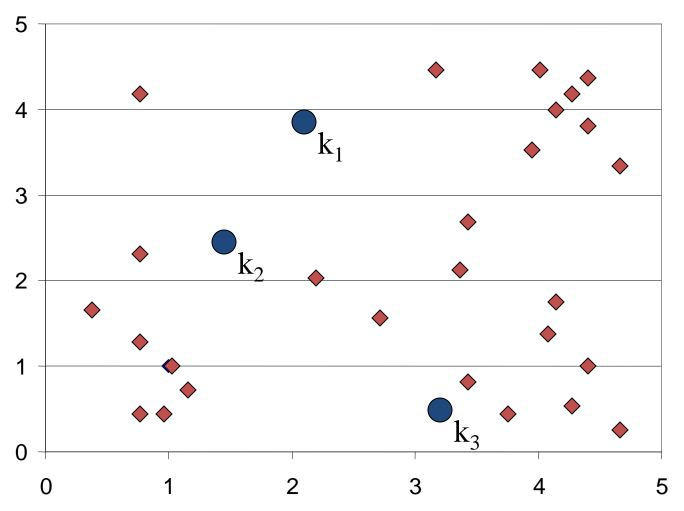
In this case

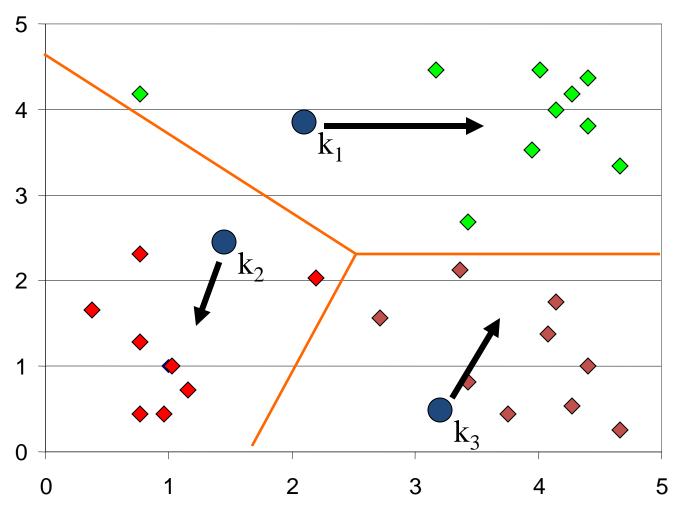
- n=12 (blue points)
- k=2 (red points, the computed centroids)
- distance metric used: Euclidian
- minimization seems to be achieved

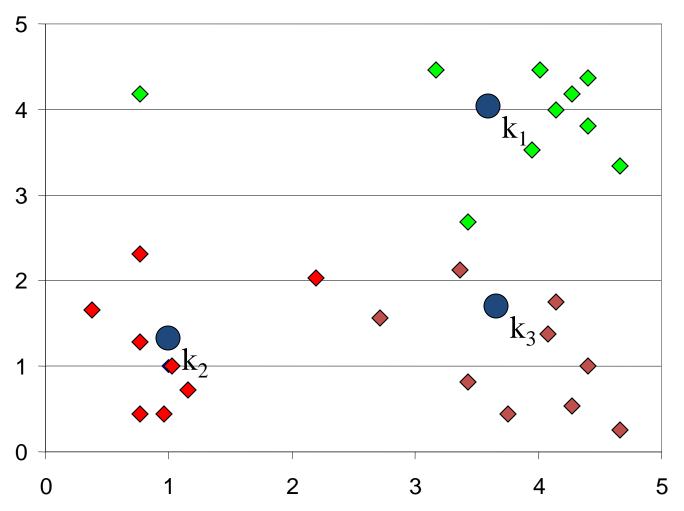


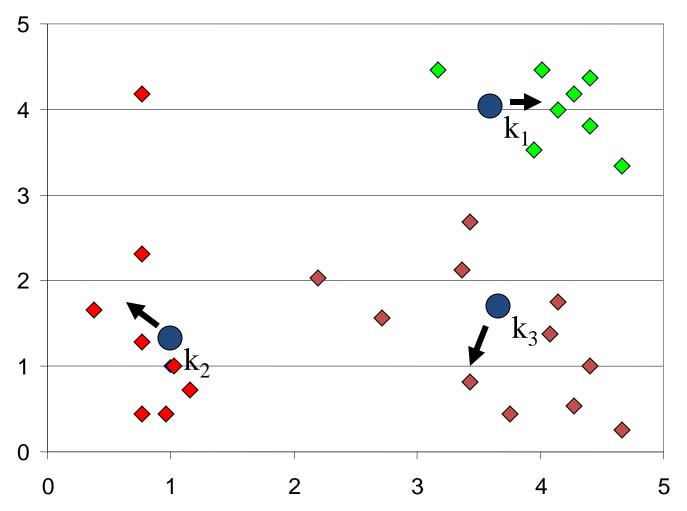
THE K-MEANS CLUSTERING ALGORITHM

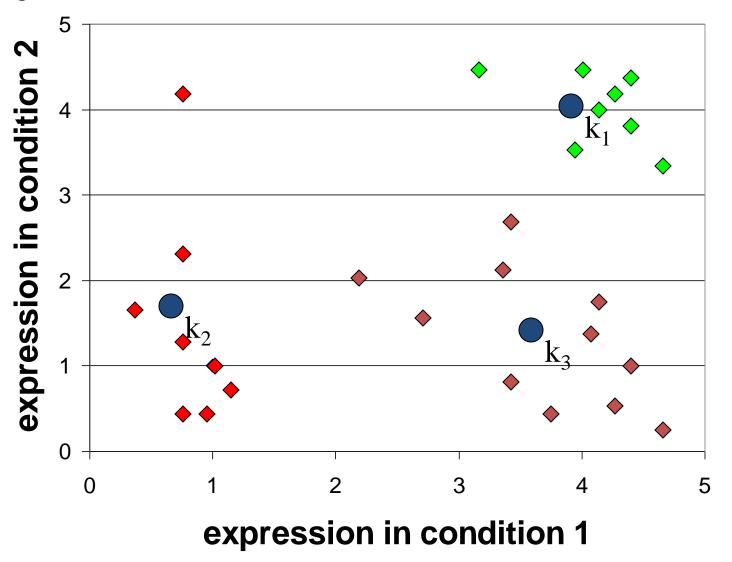
- 1. Decide on a value for k
- 2. Initialize the k cluster centers (randomly, if necessary)
- 3. Decide the class memberships of the N objects by assigning them to the nearest cluster center
- 4. Re-estimate the k cluster centers, by assuming the memberships found above are correct
- 5. If none of the N objects changed membership in the last iteration, exit. Otherwise goto 3











K-Means Algorithm - Comments

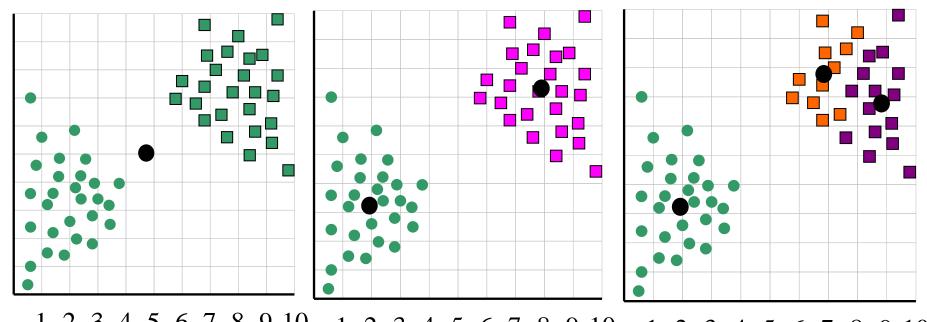
Strengths:

- relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- simple to code

Weaknesses:

- need to specify k in advance which is often unknown
- find the best k by trying many different ones and picking the one with the lowest error
- often terminates at a local optimum
- the global optimum may be found by trying many times and using the best result

How Can We Find the Best K?



1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

k=1, MSE=873.0

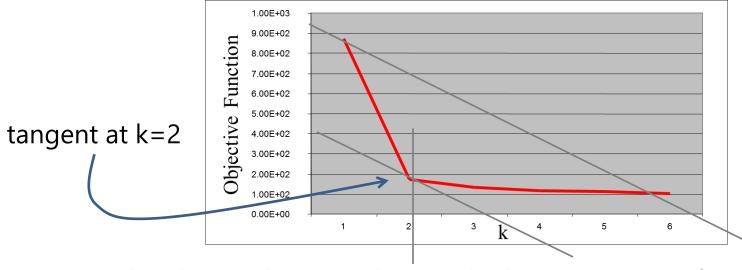
k=2, MSE=173.1

k=3, MSE=133.6

HOW ABOUT K=2?

Is there a principled way we can know when to stop looking? Yes...

- we can plot the objective function values for k equals 1 to 6...
- then check for a flattening of the curve



- the abrupt change at k = 2 is highly suggestive of two clusters
- this technique is known as "knee finding" or "elbow finding"

BACK TO DATA REDUCTION

What is sampling?

- pick a <u>representative</u> subset of the data
- discard the remaining data
- pick as many you can afford to keep
- recall: once it's gone, it's gone
- be smart about it

Population Sample Individual

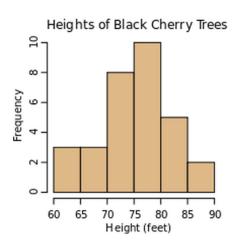
Simplest: random sampling

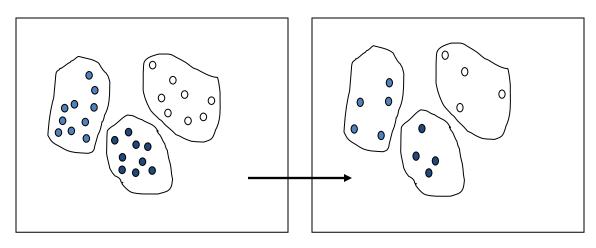
- pick sample points at random
- will work if the points are distributed uniformly
- this is usually not the case
- outliers will likely be missed
- so the sample will not be representative

BETTER: ADAPTIVE SAMPLING

Pick the samples according to some knowledge of the data distribution

- cluster the data (outliers will form clusters as well)
- these clusters are also called strata (hence, stratified sampling)
- the size of each cluster represents its percentage in the population
- guides the number of samples bigger clusters get more samples





sampling rate ~ bin height

sampling rate ~ cluster size

REDUNDANCY SAMPLING

Good candidates for elimination are redundant data

how many cans of ravioli will you buy?

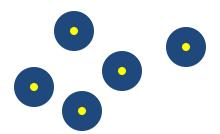
REDUNDANCY SAMPLING

Eliminate redundant attributes

- eliminate correlated attributes
 - km vs. miles
 - $-a + b + c = d \rightarrow can eliminate 'c' (or 'a' or 'b')$

Eliminate redundant data

- cluster the data with small ranges
- only keep the cluster centroids
- store size of clusters along to keep importance



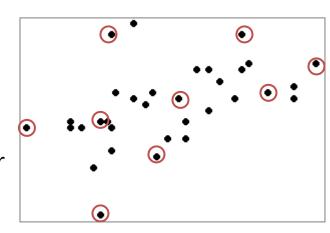
SAMPLING OF WELL-SCATTERED POINTS

Used in the CURE high-dimensional clustering algorithm

S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering algorithm for large databases." *ACM SIGMOD*, 27(2): 73-84, 1998

Algorithm

- initialize the point set *S* to empty
- pick the point farthest from the mean as the first point for S
- then iteratively pick points that are furthest from the points in S collected so far



Complexity is $O(m \cdot n^2)$

- ullet n is the total number of points, m is the number of desired points
- can find arbitrarily shaped clusters and preserve outliers, too
- need some good data structures to run efficiently: kd-tree, heap
- can get really expensive when the dimensionality d is large because each pairwise distance has O(d)

SUMMARY

Learned about

- distance metrics to evaluate similarity among data points
- correlation, cosine, Euclidian, Jacquard, Manhattan distance
- used it for clustering that can identify groups in data
- these groups can be used for unbiased data reduction and augmentation
- the k-means algorithm as a simple yet effective clustering scheme
- the elbow method to pick a good k = number of clusters
- advanced sampling methods: well-scattered points,. Reservoir sampling for streaming data